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A theoretical (thermodynamic) method for the estimation of
mechanical characteristics of polymeric systems is proposed.
This method uses the statistical polymer method for modeling of
branched/cross-linked structures. The weak interaction between
macromolecules is modeled in the approach of their mutual
interpenetration. The proposed method is used for the estimation
of mechanical resistance and stability of microporous polymeric
materials. An engineer method for the evaluation of mechanical
stability and resistance of polymeric materials is derived. © 2002
Elsevier Science (USA)
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INTRODUCTION

The problem of estimation of mechanical properties of
polymeric materials with branching (and cross-linking) is
one of the most important but is difficult to solve in terms of
the physical chemistry of the solid state. Many existing
constructive materials are polymeric, and the evaluation of
their mechanical characteristics is extremely important for
their practical use. Moreover, forecasting the properties of
new materials (at the stage of their elaboration) may serious-
ly reduce the costs of the experimental studies and tests, due
to the preliminary evaluation of mechanical characteristics
of the projected microporous material, based on the rela-
tionship between its preparation conditions, structure, and
properties.

Existing theoretical methods for the study of the mechan-
ical stability/resistance of materials are based on traditional
theories of solid state. A brief analysis of these methods was
given in (1), where a similar problem was solved for pyrolyti-
cally prepared microporous materials.
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In the present paper, we propose a theoretical (thermo-
dynamic) method for the evaluation of mechanical charac-
teristics of polymeric structures, first their mechanical
stability and resistance, and a related engineer method for
forecasting the mechanical resistance of a polymeric mater-
ial, based on the conditions of its preparation.

Let us solve this problem in two stages: (1) mechanical
properties of a single macromolecule, and (2) properties of a
structure composed of multiple interacting macromolecules.

As was shown in (2), the results of any tests related to any
deformation can be generalized for every kind of deforma-
tion, due to using an exponential formula. Therefore, it is
enough to build a model containing a single kind of defor-
mation, as was done for pyrolytically prepared microporous
materials in (1). For this reason, we use below an approach
similar to that employed in (1).

MODELING OF BRANCHED POLYMERS

The main problem in modeling of branched structures is
due to their enormous number. Hence, each model of
branching needs, first, to reduce the number of structures.

According to the rule of computing, models are divided
into analytical and numerical ones. Numerical models do
not need an analytical solution but replace it with numerical
simulations.

According to the main assumption about several speci-
fications of the treated structures, existing models can be
divided into fixing structure (architecture) and nonfixing
structure ones. The fixation of considered structures, based
on several physical considerations, reduces significantly the
number of treated structures, but may sometimes lose the
correctness of the description of branched macromolecular
systems.

The majority of existing models of branching is based on
several fixations of treated structures: stars, quasichains,
etc. (3, 4).

Many numerical models do not need such specifications,
but they have difficulties in the treatment of structures

0022-4596/02 $35.00
© 2002 Elsevier Science (USA)
All rights reserved.



238

with a moderate or high degree of polymerization (see
below).

According to the approach regarding the mechanism of
polymer formation, models are classified into kinetic and
statistical ones.

Numerical Models

This method of solution of problems of branching avoids
numerous complicated equations, due to the limitation of
the degree of polymerization. Numerical models allow, in
principle, evaluation of every characteristic parameter of
a considered system.

Numerical simulations are very useful in studies of con-
formational properties of branched polymers having a low
degree of polymerization. Monte Carlo, molecular dynam-
ics, and Brownian dynamics methods are employed to simu-
late the equilibrium and dynamic behavior, and also to
reproduce hydrodynamic properties. The simulations are
performed on several polymer models. Different Monte
Carlo algorithms are devised for lattice and off-lattice mod-
els. Numerical models are effective in the description of
uniform homopolymer stars as single chains, or in non-
diluted solutions and melts, employing a variety of tech-
niques, models, and properties. Other important structures,
such as stars with different types of monomer units, combs,
brushes, dendrimers, and absorbed branched polymers,
have also been the subject of specific simulation studies
(3-5).

Nevertheless, numerical models have the following short-
comings:

(1) Numerical models are very sensitive to initial data,
error of calculations, and selection of the random number
generator.

(2) The physical sense of obtained numerical results is not
always clear.

(3) Itis difficult to distinguish physical tendencies, as they
are calculated, from eventual errors.

Below, we consider only analytical models.

Statistical Models

The statistical approach is based on the Flory-Stock-
mayer concept of branching trees. The mathematical
techniques of this approach use probability generating func-
tions. The building (monomer) units and molecules are
represented by graphs. The collection of branched molecu-
les in the system is represented by a collection of molecular
trees composed of monomers. This collection is transformed
into a collection of rooted trees by choosing every monomer
unit (node) for the root with the same probability and
placing it on generating zero (6). The covalently bound units
appear in the first, second, etc. generations with respect to
the unit in the root. This transformation provides two
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principal consequences: (1) the distribution of units in the
root represents the distribution of units in the system, and
(2) an N-mer is rooted N times so that it appears in the
collection of rooted trees—the rooted forest—N times. The
transformation into the rooted trees is performed in order to
be able to generate the trees using simple probabilistic
considerations (6). The monomer units differ in the number
of reacted functional groups. For a single-component sys-
tem, this distribution is sufficient for building trees. It is
assumed that the reactivity of a group in a unit does not
depend on the state of groups in neighboring units (6).

Thus, in the mathematical sense, the main characteristic
of a polymeric system (in the statistical approach) is a prob-
ability generating functions (PGF), which is defined for the
number of bonds issuing from an f-functional monomer in
the root Fy(z) as

f
Fo(z) = Z PiZi~ [1]

i=1

In Eq. [1], p; is the probability of finding a monomer unit
in the root having i issuing bonds. This probability is equal
to the fraction of units with i reacted functional groups; z is
a variable of the generating function through which the
operations with PGF are performed (6).

The statistical approach is applicable to two opposite
kinds of systems: polymers in equilibrium, for which the
sequence of reactions leading to their formation is not
important, and polymers formed due to eventual interaction
of radicals. Obviously, in real practice, the equilibrium situ-
ation is much more important, especially for aggregates.

One of the principal shortcomings of the statistical ap-
proach is due to the assumption that structures having
various shapes are formed with the same probability. Other
drawbacks of this approach will be considered below.

Another statistical method for the study of branched
structures, based on the assumption of a given configuration
of branched polymers on the lattice uniquely characterized
by specifying of the total number of monomers, the number
of chemical bonds, the total number of k-functional sites
(k=1,2,3,...), the total number of loops in all the poly-
mers, and the number of polymers was developed in
(5, 7-11). In many cases, the equilibrium distribution of the
polymers is assumed (7-10). This approach allows solution
of some problems regarding the behavior of polymers on the
interface. However, not all assumptions in this approach
seem acceptable (for example, the applicability of the lattice
model is sometimes doubtable).

Kinetic Approach

This approach was developed by Kuchanov (12).
The polymeric system is described by an infinite set of
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differential equations for the concentration of each N-mer.
There are two principal schemes realizing this approach.

1. Random irreversible step polyaddition of an f~func-
tional monomer. Each macromolecule is characterized by its
degree of polymerization N and the number of unreacting
groups V(N). For a tree structure, V is found from the
following equation (6, 12):

V(N)=N(f—2)+2. [2]

The formation of an N-mer having V unreacting groups
(Ay.y) is described by the following equation:

Agje1 + Av—kv—jr1 = Any. [3]

The system is described by corresponding kinetic equations
for the change of Cy y with time (6, 12).

2. Initiated living polymerization. This process is impor-
tant for such substances as epoxy resins and described by
the following reaction scheme,

M + Pol(N) - Pol(N + 1) [4]
M + Pol(N + 1) > Pol(N + 2), [5]

where Pol(N) means N-mer. Also for this case, kinetic
equations in the differential form are written and solved
(6, 12).

The kinetic approach is applicable only to systems in
nonequilibrium, for which the reverse reaction (decomposi-
tion of macromolecules) is neglected. As result, this
approach cannot be used for derivation/evaluation of ther-
modynamic functions. Also, in this approach, the problem
of equivalence of all shapes of macromolecules (as was
mentioned for the statistical approach) persists.

Both statistical and analytical approaches can be em-
ployed not only in analytical but also in numerical forms.

The complexity and the large number of equations in the
kinetic approach make it less used by researchers, in com-
parison with the statistical approach.

For both statistical and kinetic approaches, we mention
the methodological problem: there is no conjugation bet-
ween them or with the model describing chain structures
(13). A system transformed from nonequilibrium to equilib-
rium cannot be described by the statistical approach (which
is invalid for nonequilibrium) nor by the kinetic approach
(which is not applicable to equilibrium). Hence, before the
application of such an approach, the researcher must know
whether or not the system he deals with is in equilibrium.

In contrast to kinetic and statistical approaches, the stat-
istical polymer method (SPM) considered below brings the
necessary conjugations automatically.
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Statistical Polymer Method

The concept of statistical polymer method comprises
three levels of modeling: (1) single macromolecules with
branching (no cross-links), (2) simple macromolecular
systems (equilibrium mixtures of macromolecules having
branched/cross-linked structure), with estimation of their
additive parameters, and (3) complex macromolecular sys-
tems, with nonequilibrium, nonadditive parameters.

The statistical polymer method was experimentally tested
indirectly (against existing curves of adsorption isotherms
measured on microporous materials having branched cross-
linked structure (14)) and indirectly (with reproduction of
the Trommsdorf effect (15)).

Statistical polymer is defined as the average structure
including all possible (taking into account their probability)
structures of polymers containing the same number of
monomers. This definition allows formulation of all pro-
cesses in polymeric mixtures in terms of statistical polymers.
Reactions of polymerization/destruction (decomposition,
depolymerization) are written as

SP(N) + M <= SP(N + 1) [6]

SP(Ny) + SP(N,) < SP(N; + N,), [7]
where M is the monomer, and SP(N) is an N-meric statisti-
cal polymer (16).

An equilibrium situation is described by a number of
independent reactions. Reactions between statistical poly-
mers and monomers [6] and their reverse are chosen as the
basis of independent reactions (16).

The capability of an N-mer to accept an additional
monomer is characterized by the occurrence of unreacting
bonds (defined as vacancies), their number being found (for a
non-cross-linked situation) as Vi(N)=(f—2)N +2 =
(m — 1)N + 2, where fis the functionality, and m = (f — 1)
the number of branching. Independent reactions [6] are
written as reactions of occupation of vacancies:

SP(N)xVac + M < SP(N + 1). [8]

The reverse reaction (transformation of (N + 1)-mer to
N-mer) is characterized by removal from the (N + 1)-mer of
a monomeric unit having one single bond only with the rest
of polymer (otherwise no N-mer obtained but two new
polymers). Such monomeric units are defined as extreme

units. Their number (in the non-cross-linked case) is found
from recursive equation:

. mUz(N)

Us(N 1) = Us(N) + 1 = =2,

(9]

Obviously, Us(1) =1, Us(2) = Us(3) = 2.
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Below, we use the statistical polymer method for studies
of mechanical properties of macromolecular systems.

The rates of direct and reverse reactions [6] are found,
respectively, from

W, (N + 1) =K, V):(N)CICN:

W_(N+1)=K_Us(N + )Cysy,  [10]

where C; and Cy are concentrations of monomers and
N-mers, respectively, and K, K_ are constants of direct
and reverse reactions [6], respectively. The condition of
equilibrium is given by (16)

Cyer_ K V(M)
C,Cy K_Us(N+1)

[11]

W.(N+1)=W_(N+1) =

For classical polymeric systems, polymerization in equi-
librium is not typical. The solution of this problem is much
more important for various aggregates. Probably for this
reason, no experimental data about weight distribution in
equilibrium are found in the literature. However, aggregates
such as polymer-like adsorbents were described by the stat-
istical polymer method, and this model was used for treat-
ment of adsorption isotherms; the correlation between
experimental and theoretical data was excellent (15).

Cross-Link Formation

The statistical polymer method describes cross-links as
internal bonds in polymers; hence, their formation is deter-
mined by the same vacancies which cause polymerization.
The number of possibilities for cross-link formation is found
from (14, 15)

C. = LVa(N)IN — 1 — Bos(N)], [12]
where By is the number of monomeric units having no
vacancies, found from a recursive equation analogous to
[9]. The rates of reaction of cross-link formation and de-
struction are given by the following equations, respectively,

Wc+ =Kc+cr» Wc— =Kc—Gr’ [13]
where G, is the number of cross-links, and K., and K, _ are
constants of cross-link formation and destruction, respec-
tively. In equilibrium, the left parts of equations [13] are
equal:

Wc+ = Wc— = Kcr = Gr/cr

= 2G/Vx(N)/[N — Box(N) — 1]. [14]
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Let us note that Eqgs. [12], [13] are basic not only for
equilibrium but also for nonequilibrium system description.

Thermodynamic Functions

Equation [11] can be rewritten as follows

AS°(N) = AS? + R,In[Vy(N)/Us(N + 1)], [15]

where Ky = K, /K_. The heat effect of polymerization is
AH® = AE,, AH® = 2¢,. From Eq. [15] we obtain

AS°(N + 1) = R,[InKo + InVg(N) —InUs(N + 1)]. [16]
For the case of dimerization:
AS® = R [In Ko + InVs(1) — In Ug(2)]. [17]

From Egs. [15], [17] follows (15)

2V5(N)
(m+ DHUg(N + 1)]' (18]

ASO(N + 1) = AS°(2) + Rgln[

The chemical potential of the statistical N-mer is found from
(15)

u(N) = p°(N) + R, TIn C(N) [19]

HON) = eoV(N) — M [20]

) . . N 2Vs(n — 1)
M= T NS+ Nas) + Y Rin ZE0C

[21]

n=1

where S°(1) is the entropy of monomer (17, 18).

Evaluation of Additive Parameters of the Polymeric System

All additive parameters are found from the following
equation,

My= Y CNTIN), [22]

where IT(N) is the value of evaluated parameter I1 for the
N-mer.

Fractal Properties

The statistical approach allows description of fractal
properties of polymeric structures, comprising percolation
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(19). Fractal properties of branched macromolecules with
cross-linking can be analyzed by the statistical polymer
method as was done in (15). In such a case, both size and
volume of the statistical N-mer are found by the statistical
polymer method, and then the fractal dimensionality is
evaluated from
dp = (logyo(V2/V1))/(l0g10(R2/Ry)), [23]

where V; and V, are volumes of N;- and N,-mers, respec-
tively (both N, N, — infinity, V; = N;, V, = N,), and Ry,
R, are their characteristic sizes.

In the analysis of physical properties of separate mac-
romolecules (presented below) we use the statistical polymer
method.

Estimation of Polymer Size in the Statistical
Polymer Method

The polymer size estimation is based on the structural
considerations in the statistical polymer method presented
in (14-16).

A monomer unit in the statistical polymer is chosen as
a basis. All other monomer units can be divided into groups
located the same distances from the basis. Such distance is
expressed in monomer units. The group located at the
distance of K monomer units from the basis is characterized
(by definition) by (K + 2)-th level. The basis corresponds to
the first level, its neighbors form the second level, etc. The
total number of levels in the statistical N-mer is N. Each
level is characterized by the number of monomer units
Ri(N) and vacancies Vi(N). These parameters are found
from the following equations (15, 16):

R (N + 1) = Ry(N) + (mVy— 1(N) — Vi(N))/Vz(N) [24]
Vi(N) = mRy_{(N) — Ri(N) [25]
R{(N)=1, Vi(N)=0. [26]

Equations [24]-[26] allow the evaluation of the charac-
teristic size (“diameter”) of the statistical N-mer, that being
defined as (15)

Z(N) = Z Wi(N) [27]
Wi(N) = 1 if Ry(N) > 1 [28]
W (N) = Ry(N) if Ry(N) < 1. [29]

Figures 1a, 1b present the dependence of the character-
istic size of statistical polymers of different weight on the
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FIG. 1. (a) Characteristic size of statistical N-mer: m = 3 (series 1),
m =17 (series 2), and m = 2 (series 3). (b) Relationship between sizes for
m=3and m=71.

degree of polymerization, for branching numbers 2, 3, and 7;
these numbers are frequently found in polymeric and ag-
gregated systems (corresponding to functionality or coor-
dination number 3, 4, or 8, respectively).

We may note that, as follows from Figs. 1a and 1b, the
divergence between the curves for m > 2 is not large; hence,
the number of branching does not influence much the char-
acteristic size. Let us note that, in the practical aspect, the
situations m = 3 and m = 7 are most important; hence, an
error in the estimation of m does not cause catastrophic
faults in the evaluation of the characteristic size of branched
macromolecules.

Equations [24]-[26] are useful also for the evaluation of
other averaged structural parameters of branched polymers,
e.g., moment of inertia. Rotation of a statistical polymer is
characterized by the two following parameters:

_ Ya=1 kRu(N).

YV kRy(N)k?
N ’ - '

I
! NI,

I [30]
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Figure 2 presents I; and I, as functions of N at m = 3. As
follows from Fig. 2, the inertia moments do not significantly
change with N at a high degree of polymerization.

Influence of Cross-Linking on the Characteristic Size
of the Statistical Polymer

Cross-link formation between monomeric units belong-
ing to kq-th and k,-th levels (k; < k,) is equivalent to the
transfer of the unit from the k,-th level onto the (k; + 1)-th
one. Hence,

(1) cross-linking between the k-th and (k + 1)-th levels
does not change the characteristic size;

(2) if k; > (ky + 1), all units having more k, level and
connected with the linked unit on the k,-th level are
“moved” onto the corresponding levels.

Of course, the assumption of no change of the character-
istic size because of cross-linkages inside the k-th level or
between the k-th and (k + 1)-th levels is an approximation,
but the fraction of such cross-links is so low that the error
can be neglected.

The probability of getting cross-linkage between the k;-th
and k,-th levels is

P(ky, ky) = o Ry1 (N)Ri2(N) [31]
1

= , 32
Yh -1 X =1 Ry (N)R,(N) [32]

%

where o, is the normalization coefficient.
The influence of cross-linking on the characteristic size is
equivalent to the change of the values of R (N),

SRE(N) = ths — iy [33]
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N

U+ = Z U(k,) [34]
ki=k+2
k-2

Up- = Z Uik,)> [35]

k=1

where vy, = P(k, k), and v,, = P(k, k).

The change of the characteristic size because of formation
of C cross-links in a statistical polymer is equivalent to
C times repeated transformation given by Eqgs. [31]-[35].

The change of the characteristic size because of cross-
linking is given by Fig. 3. We note that, as follows from
Fig. 3, the number of cross-links is not as important as their
existence itself (meaning even the existence of one single
cross-link): even one cross-link changes the characteristic
size much more than the formation of second and third
links.

Correlation between the Characteristic Size and
the Entropy

A statistical N-mer having characteristic size L(N) is able
to occupy any position in volume V(L) = L3; hence, a larger
value of L means more available microstates and higher
entropy. This is found from the following equation:
S(L) = R[NIn(V/N) +(V — N)In(V/(V — N))1. [36]

Cross-linkage reduces the characteristic size (L - L', L' <
L) and, respectively, the entropy,

8S = R,NIn(V'/V) + (V' = N)In(V'//(V' — N))

—(V—=N)In(V/(V — N))], [37]
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FIG. 3. Size of cross-linked polymers. Series 1, one cross-link; series 2,
two cross-links; series 3, three cross-links; series 4, no cross-links.
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where V' = V(L'). Taking into account that the volume
fraction occupied by the macromolecule is not too large in
any case, Eq. [37] can be rewritten approximately:

0S8 = R,NIn(V'/V). [38]
Cross-linking delivers energy of two vacancies getting link-
age; therefore, the resulting change of free energy is

0G = 2¢9 + TOS. [39]

The above analysis concerns a single macromolecule with
branching and cross-linking. For a system consisting of
a number of such macromolecules, their interaction needs to
be accounted for.

Inertial and thermodynamic characteristics considered
above are additional parameters (or related to several addi-
tional parameters); therefore, after they are estimated for
separate macromolecules, their values for polymeric mix-
tures are found from Eq. [22]. However, such properties
as mechanical resistance and stability cannot be found with-
out analysis of interactions between macromolecules in
mixtures.

Bonds in the Macromolecular Structure

The considered macromolecular system is characterized
by the following interior bonds:

(1) intermonomer bonds forming the macromolecules
(not cross-linkage);

(2) cross-links, which influence the form and the charac-
teristic size of macromolecules—in their energy of forma-
tion they are similar to intermonomer bonds, but their
formation reduces much the system entropy, and cross-links
may get eventual tension because of the steric factor;

(3) weak intermacromolecular bonds, which form the
structure from macromolecules.

Under an exterior pressure, intermacromolecular bonds
are destroyed first, this process being completely or partly
irreversible. If the pressure loading is accompanied by heat-
ing, many cross-links are broken too, also a reversible
process. Intermonomer bonds and the rest of the cross-links
(that eventually do not cause steric problems to their macro-
molecules) are destroyed under much higher pressures.

Structure of Macromolecular System

A macromolecular system with branching and without
numerous cross-links may have a very high porosity. For
several systems, that can be more than 80% (e.g., silica gel
(20)). If a macromolecular mixture is treated under pressure,
two factors are found reducing the porosity: additional
cross-link formation, and interpenetration of macro-
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molecules. Interpenetration is understood as a form of inter-
action of macromolecules that results in finding monomeric
units belonging to a macromolecule inside the volume
limited by monomeric units belonging to another macro-
molecule. The physical sense of interpenetration is the occu-
pation of voids inside several macromolecules by other
macromolecules.

The condition of additional cross-link formation is given
by the same equations [12]-[14], while interpenetration of
two or more (u) macromolecules is possible under condition
that

p<M=1/1-=2), [40]
where ¢ is the maximal available local porosity (this corres-
ponds to a system containing infinite macromolecules with-
out cross-links, nor interpenetration); & = (Z3 — Z%)/Z%
(Z is found from Eq. [27], Z — infinity; d; is found from
Eq. [23]).

A macromolecular system acted on by an exterior pres-
sure P is described by the following equation,

P dV, =dE n, [41]
where dV,,, and dE,,,,, are the changes of the volume and the
interior energy of the macromolecular system, respectively,

dem = dI/cl + dI/lp [42]

dEm = dE + dE;

ip»

[43]

where the terms with indices “cl” and “ip” mean cross-
linking and interpenetration, respectively. For many sys-
tems, the cross-linkage does not significantly depend on
pressure, and the deformation is determined mostly by in-
terpenetrations.

The whole volume of the macromolecular system can be
divided into M zones containing (each) u interpenetrating
macromolecules. For the zones in which interpenetration is
not found, we assume (by definition) y = 1, whereas the
maximal available value of y is M (see Eq. [40]). The value
of M is estimated by the statistical polymer method, as
described above.

The system is characterized by the distribution function
F(u) presenting the fraction of monomeric units found in
zones of u times interpenetration. The amount of mono-
meric units, the volume, the energy, and the entropy are
estimated from the following equations:

[44]

[45]

oS
I
Mg
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Es = Z euF () [46]
Sy = (% () In(F( ))> [47]

where ¢ is the averaged porosity, and ¢ the energy of a single
weak bond. Let us assume that the porosity of macro-
molecules does not directly depend on pu (meaning that the
interpenetration does not change the form of macro-
molecules). For a system close to equilibrium, the entropy is
at a maximum,; therefore, a little variations of the left terms
in Eqs. [44]-[47] gives

Z oF (1) =0 [48]
y KW [49]
n=1 u
M
> uoF(u) [50]
=1
Z (F(p) + 1)) =0. [51]
From Egs. [48]-[51] we obtain
< 73
Z #)(th( )+ 71+ 12 +ﬂ>:0 [52]
or
F(u) = Apexp(fy/u + Beep). [53]

Equations [48]-[53] provide the complete description of
a macromolecular structure with interpenetration.

If interpenetration is accompanied by cross-linking, the
contribution of each process to the total mechanical resist-
ance is estimated from the following equations for
volume, energy, and entropy:

SVy = 6Viy + V4 [54]

5E): = 5Eip + 5Ecl [55]

552 = 5Sip + 5831 = maximum — 6Sip = 5501. [56]

Figure 4a presents the value of pressure needed for cross-
linking of different macromolecules. As follows from Fig. 4a,
the greatest contribution to the mechanical resistance of
polymeric materials is due to low-degree macromolecules.
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linking; series 2, cross-linking + IP.

Since cross-linking is high-energy process (in contrast to
interpenetration, which is a low-energy process, as noted
above), cross-linking takes place mostly under lower pres-
sures (compare to Fig. 4b).

As follows from Fig. 4b, the initial rising of curve 2 is
caused by two processes: (1) cross-linking of hard macro-
molecules, and (2) initial interpenetration. The sharp rising
of curve 2 is due to cross-linking of light molecules, while the
further rising is due only to interpenctration.

Engineer Evaluation of the Mechanical Resistance of a
Polymeric System

The present engineer method is based on the above ap-
proach and comprises the following stages of computing:

1. Characterization of separate macromolecules: the in-
itial parameters are the number of branching m (or function-
ality f), constants of the direct and reverse reactions K .,
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K_,K.,, K., (or, for equilibrium, K, and K,). All values
Vs(N), Us(N), Cy, C,, AS°(N), u°(N) are found from Egs.
[8]-[21].

2. Characterization of the interior structure of separate
macromolecules: values R;(N) and Z(n) are found from
Eqgs. [24]-[27]. If necessary, values I; and I, are found from
Eq. [24].

3. Evaluation of the fractal dimensionality and related
parameters: the fractal dimensionality is found based on
Eq. [23]. The maximal porosity ¢ and the maximal number
of interpenetration M are then calculated.

4. Evaluation of interpenetration parameters: the inter-
penetration distribution function is found from Eq. [53].
The function P(V') is computed based on Eqgs. [41]-[53].

CONCLUSIONS

A theoretical (thermodynamic) method for the estimation
of mechanical characteristics of polymeric systems has been
proposed. This method uses the statistical polymer method
for modeling of branched/cross-linked structures. The weak
interaction between macromolecules has been modeled
in terms of the approach of their mutual interpenetration.
The proposed method has been used for the estimation of
mechanical resistance and stability of microporous poly-
meric materials. An engineer method for the evaluation of
mechanical stability and resistance of polymeric materials is
derived.
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